

INNOVATIVE TECHNOLOGY PARTNER

Customer Focused Corporation

The goal of LS injection molding machines is to meet and exceed the technology and quality requirements of all customers in the global market. We (in partnership with our customers) will expand entry into advanced markets with continuous technology and quality innovation that consistently creates value for our customers. This will lead to high and consistent earnings growth by anticipating and understanding market needs in advance and leveraging this knowledge and insight as an indicator to drive technology, leadership and innovation within the global market without ceasing.

Beginning with the development of Korea's first direct compression injection molding machines, LS has always put the customer first. From customer focused and dedicated injection molding machine technology such as two-platen injection molding machines for molders of light guide plates and mobile phones to multi-color injection molding and ultimately to all-electric injection molding machines which are the fruit of the most advanced technology.

Management Philosophy

LSpartnership is about achieving exceptional performance based on mutual respect, care and trust by the people of LS who value integrity and who have a sense of ownership resulting in creating a greater value together, both internally as well as externally with our customers, through cooperation and having open minds.

LSpartnership pursues true partnerships based on action.

Together with its global partners around the world, all those at LS will seek greater value for the next generation through collaborative relationships.

LS Mtron LS Cable & System LS IS LS-Nikko copper GOON [yes'co **LG** Electronics Telecommunication GS Construction Energy Service

Vision

LS Mtron has announced its vision to begin the second act of its new growth story.

LS Mtron's vision is to "Be the ONE" Outstanding People, Best-in-Class Product, Winning Partnerships".

In "Be the ONE", "Be" indicates the determination to "accomplish at all costs!", while "ONE" declares our future state to be the "Top No. 1 and first." "Be the ONE*" signifies LS Mtron's goal in which outstanding people join forces to create best-in-class products that impress customers and drive prosperity for all stakeholders. In addition, "Ownership, New-thinking and Excellence" are the driving forces behind "Be the ONE*" and these core values shall become the basis by which the behaviors of LS Mtron staff are evaluated.

Vision Structure

Vision

Core Values

Outstanding People

The person with the world-class competences in the area of his or her role and task.

Ownership

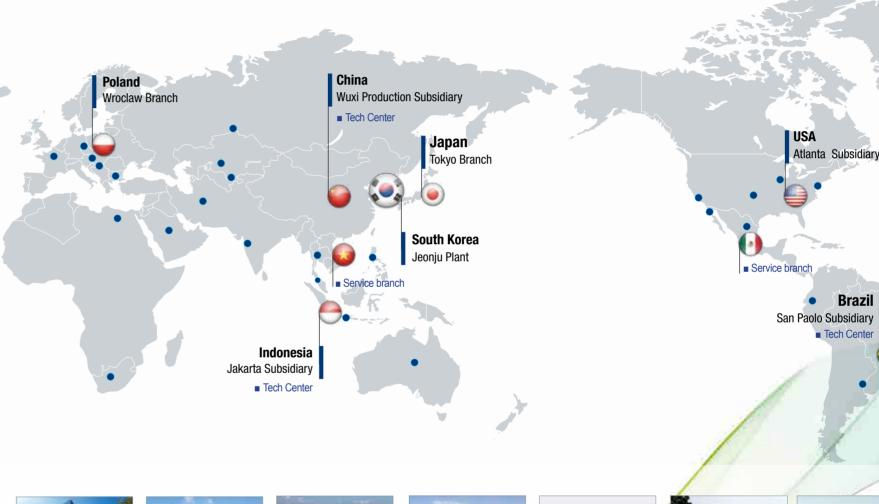
Threw themselves heart and soul into the tasks as if the company and businesses are their own.

Best-in-Class product

Products and services with excellent quality and value giving satisfaction to customers beyond expectations.

New-thinking

Pursuit of positive changes with enlighten and flexible thinking


Winning Partnership

Sharing growth with employees, subcontractors, customers and society.

Excellence

Create customer value with its expertise and insights.

* Global Networks

Head Quater

LS Mtron Ltd.

Brazil

■ Tech Center

China Plant

04 | About LS Mtron

Difference in technology is a keyword for success!

LS Mtron is offering various model from 20UStons to 4,500UStons in Automotive, Home appliances, Medical, Packaging, etc

1947 ~ 1970's

The opening chapter of a great story in the Korean plastic industry with LS

• Established as Lucky Chemical Industrial Corporation (Manufacturing of cosmetics begun)

• Produced Korea's first injection-molded synthetic resin products

 Gold Star started IMM business with Toshiba as T/A at Chang-won plant (Currently LG Electric)

• Gold Star developed own model-vertical IMM 10 ton, horizonal IMM 80 ton.

1990's

Premiere on the export market to worldwide

1985 • Developed LG's own model, ID-EN Series

• Started to export to USA & Southeast Asia

• Developed 1800 ton(1st machine in Korea)

• Developed 3000 ton IMM(1st machine in Korea)

2000's

Opening of a plant in Jeonju in Korea and Wuxi in China, Reinforce the product line up and strong our business

2002 • Developed 8 models of All-Electric machine LGE II-Series (30~300 Ton)

• LG Electric IMM was awarded JYS by Science and Technology Administration

• Developed 4000 ton IMM(4500 Injection unit)

Established LS Machinery(LSMW) LTD. In CHINA.

• Developed all-electric injection molding machine (450, 550 ton)

2008 • Developed brand-new premium LGH-S Series, 1300, 2000 Ton

Changed name to LS Mtron from LS Cable

• Developed two color electric molding machine (LGH EC150, 250)

• Developed brand new premium LGH-S Series, 3000 Ton

• Developed the new type of electric molding machine: LGE 180III

• Developed the large & electric injection molding machine, 2000 Ton

2010's

Continuous development of customized injection molding machine will be recognized as a global leader in plastic industry

Developed super high speed (& hydraulic) injection molding machine: LGH 150 ton

Developed LGH-S Series : 2500 Ton

• Developed the new type of electri molding machine: LGE 220III, 280III, 330III, 350III, 400III

• Developed all-electric injection molding machine

Oem toggle injection machine

• Developed IML electric injection molding machine : LGE 280II

• Developed ultra-high speed electric injection molding machine for mold frame

• Completed the construction of the High Tech Center of LS Mtron

• Developed direct high speed injection molding machine (injection speed 1,000mm/s)

• Developed electric injection molding machine for mobile phone (150 ton ~ 650ton)

• Developed Large size electric injection molding machine (LGE 1300HB)

• Developed servo system injection molding machine (150 ton~650ton): WIZ 500, 600, 700, 900, 1100

• Developed brand-new premium energy-saving WIZ-X Series (1300, 1800, 2000, 2500, 3000ton)

Developed 8 models of hybrid IMM, LTE model

Develoled electric injection molding machine for super compact connector

2015 • Developed vertical hybrid IMM (110, 150ton)

Developed electric IMM for automobile precision parts (650, 850ton)

Developed all-electric model for Injection Blow: IBM-170Ton

• Developed new model for the plastic palette: 700 ~ 4000Ton

• Developed new model for the cosmetic packaging: CPM - 170, 220, 280, 350Ton

• Developed Premium Hybrid 'the ONE Series': 500 ~ 3,600Ton

2016

2017

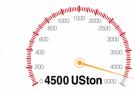
"LS injection molding machine provides innovated performance and advanced technology!"

Currently all of the accumulated know-how working is for you, the customer, who is the object of all the technology efforts of LS Mtron.

The smallest of defects do not go unattended to as LS is constantly pursuing research and experiments to meet the future expectations of our customers as we move forward together.

WIZ Series

(Energy Saving Two-Platen Injection Molding Machine)

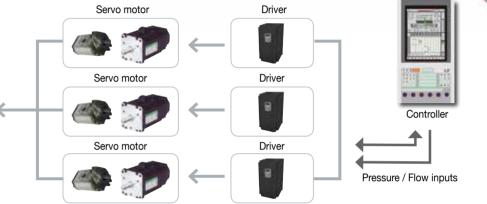


WIZ-X Series

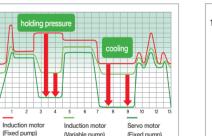
(Brand-New Premium Injection Molding Machine)

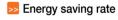
WIZ Series (500 ~ 1150 USton)

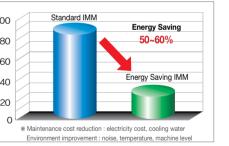
WIZ model is the best-selling mid-sized hydraulic injection molding machine in korea. These machines are the latest renewed in 2015. Increasing a molding capacity, decreasing the maintenance cost, particularly optimized in the automobile and electronic components.


ECO-SMART

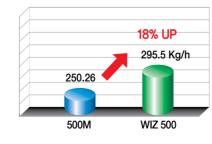
Energy saving system


Saving of electric consumption, less hydraulic oil and cooling water


• Servo motor controls pressure speed and realize 50~60% of energy saving.



Energy reduction by each part of cycle



Applies advanced technology

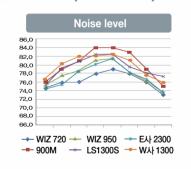
Made a technical agreement on screw design with **Nordson Xaloy**

- · Fit for all materials
- · Mixing effect
- Heat stability
- · Damage proof
- Fast resin change

LS Barrel Technologgy

Spin casting manufacturing method

- Bi metal ballel is made of nordson Xaloy's 85 years know-how, it is stable and also anti corrosive.
- Minimize faulty on plasticizing by maintain heat processing quality.



Enhanced safety and applied new design

Improvement for working environment through noise reductions and the cooling water requirement is reduced by 30% and with lower hydraulic oil temperature

Noise reduction

- To improve the working environment of workers up to 79dB noise
- Reduced by about 6~7dB hydraulic IMM (hydraulic 85dB)

Cooling water savings

Controlling oil temperature by servo motor

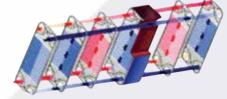
- More than 30% of the cooling water required for cooling water-saving
 Improved reproducibility of mechanical behavior of low temperature

Saving cooling water: 30%

Low hydraulic oil temperature: ~8°C

Applied high quality air breather

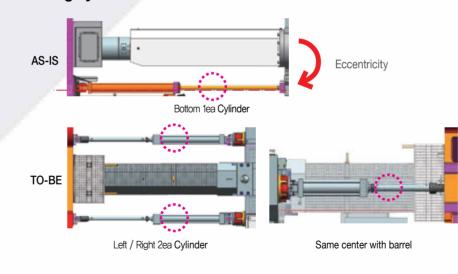
- Corrosion resistant
- Mic 10(μ m), Air Flow (900 \rightarrow 1420 l/min) Volume UP

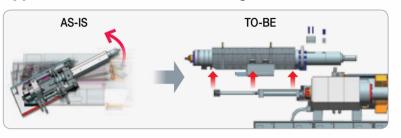


High quality air breather

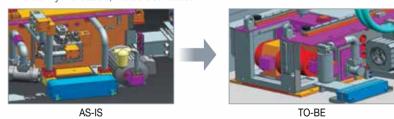
Applyied high efficient water saving cooler

- Compact & light weight
- Excellent resistance against freezing
- Inter-corrosive & Resistance
- Excellent heat exchange


Water saving platen oil cooler


■ Eccentricity prevention by parallel installment of moving cylinder

■ Injection unit move by LM guide



■ Upper unit divided for barrel change

■ Pressure pump capacity changed (7.5kW → 11kW)

• Durability increased, Noise decreased

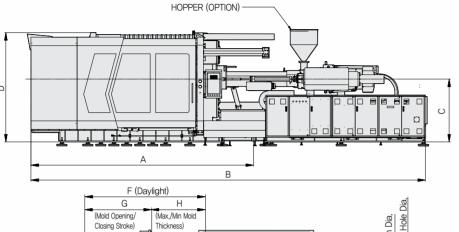
■ Circulation filter & circulation cooling unit applied

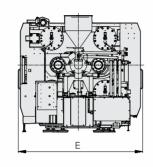
12 LS Injection Molding Machine

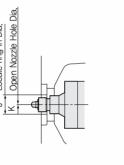
nidity: 30% ~ 95%, Temperature: +5°C~ +40°C

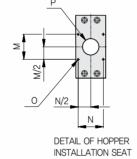
in standard. sticizing capacity are vary with material, mold and machine condition.

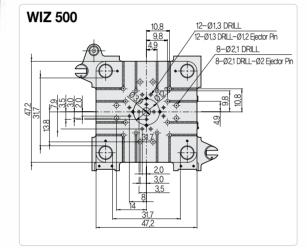
4. Due to continuous improvements, specifications are subject to change without notice.

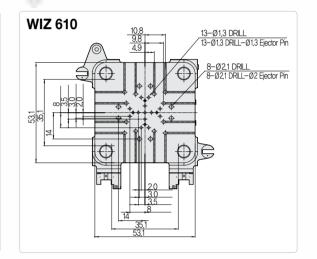

	Note 1. Operation condition
	Power: AC 380V±10%, 60Hz±5%, Humidi
W12.720	Height: That not more than 100m used in s
	 It is injection capacity, injection rate, plastici
	3. Screw code. * mark : screw of standard

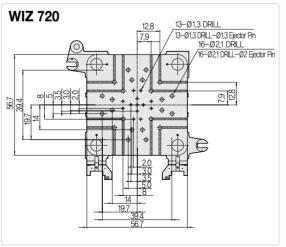

	_		
Maio	ょじいへ	\sim 1 \pm 1 \sim 4	つキュヘム
IVIZIO	1 .3I)E	36 -11116 -2	4116361
IVIGIO	I ONG	,011100	auvii

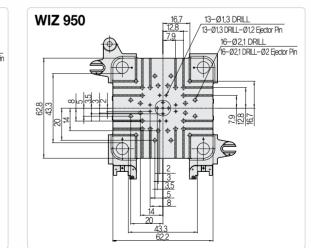

		Widioi Obcomic								
			WIZ 500			WIZ 610				
N UNIT										
			i27			i33				
		Υ	*A	В	Y	*A	В			
	mm	65	70	80	70	75	85			
	in	2.6	2.8	3.1	2.8	3.0	3.3			
culated	in ³	77.9	90.4	118.1	97.3	97.3 111.7				
DC	g	1,175	1,363	1,780	1,470	1,685	2,165			
ro 	OZ	41	48	63	52	59	76			
DE	g	932	1,082	1,413	1,165	1,340	1,720			
rc .	OZ	33	38	50	41	47	61			
	psi	31,547	27,167	20,766	31,291	27,252	21,221			
	in³/s	24.5	28.4	37.1	30.3	34.8	44.7			
(PS)	lbs/hr	514	626	736	606	701	796			
	rpm	180	180	160	180	170	150			
IG UNIT										
	ton(US)		496.0			606.3				
	ton(US)		26.6			33.2				
ods:HxV	in		32.7 x 32.7			35.4 x 35.4				
HxV	in		47.2 x 47.2			53.1 x 53.1				
	in		43.3		47.2					
	in		57.1		63.0					
	in		13.8 ~ 31.5		15.7 ~ 37.4					
High	ft/min		170.6			160.8				
Low	ft/min		6.6			6.6				
High	ft/min					164.0				
Low	ft/min									
	ton(US)		14.7			14.7				
	in		7.9			7.9				
RAL										
	gal(US)		185			248				
Hz)	kW		83 (44 + 28 + 11)			94 (55 + 28 + 11)				
	kW		24.1			27.4				
L×W×H	ft		23.0 x 7.9 x 7.2			24.0 x 8.5 x 7.9				
	lbs		42,990 (30,865 + 12,125)			55,115 (36,376 + 18,739)				
	Culated PS PE PS) G UNIT Ods: H x V High Low High Low Hall Hz)	mm in in culated in 3 9 0z psi in 3/s PS lbs/hr rpm G UNIT ton(US) ton(US) ton(US) ods: H x V in h x V in in in in in low ft/min Low ft/min Low ft/min Low ft/min ton(US) in RAL gal(US) kW kW kW LxWxH ft ft/min ton(US) kW kw kw kw kw kw kw kw	Y	127	NUNIT 127	VIVIT	NUMB			

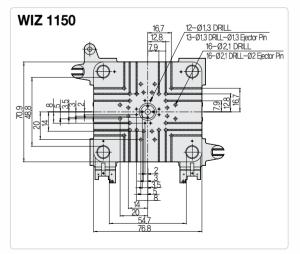

				WIZ 720			WIZ 950		WIZ 1150			
INJECTIO	N UNIT											
Injection Unit Code				i54			i90			i90		
Screw Code			Υ	*A	В	Y	*A	В	Υ	*A	В	
O D'		mm	85	90	100	95	105	115	95	105	115	
Screw Diameter		in	3.3	3.5	3.9	3.7	4.1	4.5	3.7	4.1	4.5	
Injection Capacity Ca	lculated	in³	171.4	192.2	236.8	250.8	306.5	367.6	250.8	306.5	367.6	
	PS	g	2,584	2,897	3,575	3,780	4,620	5,540	3,780	4,620	5,542	
Injection Consoits		OZ	91	102	126	133	163	195	133	163	195	
Injection Capacity	PE	g	2,050	2,298	2,830	3,000	3,666	4,396	3,000	3,666	4,398	
	rc .	OZ	72	81	100	106	129	155	106	129	155	
Injection Pressure		psi	29,087	26,967	21,847	30,609	24,891	20,894	30,609	24,891	20,894	
Injection Rate		in³/s	41.4	46.4	57.2	49.2	60.2	72.0	49.2	60.2	72.0	
Plasticizing Capacity (PS) lbs/hr		lbs/hr	1,495	1,676	2,068	1,779	2,174	2,601	1,779	2,174	2,601	
Max Screw Speed		rpm	150	140	125	125	120	110	125	120	110	
CLAMPIN	IG UNIT											
Clamping Force		ton(US)		716.5			937.0			1,157.4		
Mold Opening Force		ton(US)	44.1				70.0		70.0			
Distance Between Tie-r	ods:HxV	/ in		39.4 x 39.4			43.3 x 43.3			55.1 x 49.2		
Die Plate Dimension :	HxV	in		56.7 x 56.7			62.2 x 62.2			76.8 x 70.9		
Clamping Stroke		in		53.1			68.9		70.9			
Daylight		in		70.9			88.6			94.5		
Mold Thickness		in		17.7 ~ 43.3		19.7 ~ 51.2			23.6 ~ 59.1			
Mold Close Speed	High	ft/min		150.9			128.0			128.0		
Wold Olose opecu	Low	ft/min		6.6			6.6			6.6		
Mold Open Speed	High	ft/min		147.6			111.5			111.5		
Word Open Opeca	Low	ft/min		6.6			6.6			6.6		
Ejector Force		ton(US)		20.5			27.2			27.2		
Ejector Stroke		in		9.8			9.8			9.8		
GENE	RAL											
Utilized Oil Quantity		gal(US)		283			357			357		
Capacity of Motor (60	Hz)	kW		121 (55 + 55 + 11)			133 (67 + 55 + 11)			133 (67 + 55 + 11)		
Electric Heater		kW		39.6			55.4			55.4		
Machine Dimension :	L×W×H	ft		26.6 x 8.9 x 8.2			31.2 x 9.8 x 8.9			32.2 x 10.8 x 9.2		
Machine Weight		lbs	6	3,343 (46,297 + 22,04	16)	90),390 (61,730 + 28,66	60)	11	6,845 (85,980 + 30,8	65)	




External Form Drawing


	А	В	C	D	E	F	G	Н		J	K	M	N	0	P
WIZ 500	149.6	272.0	50.6	86.2	92.6	57.1	25.6 ~ 43.3	13.8 ~ 31.5	7.9	Ø3.9	Ø0.2	6.3	6.3	4-M12 DP25	Ø2.7
WIZ 610	161.0	292.8	57.1	93.9	98.5	63.0	25.6 ~ 47.2	15.7 ~ 37.4	8.7	Ø3.9	Ø0.2	6.3	6.3	4-M12 DP25	Ø2.9
WIZ 720	178.5	329.9	57.1	95.4	104.2	70.9	27.6 ~ 53.1	17.7 ~ 43.3	9.8	Ø3.9	Ø0.2	6.3	6.3	4-M12 DP25	Ø3.5
WIZ 950	206.0	398.8	59.1	102.8	116.9	88.6	37.4 ~ 68.9	19.7 ~ 51.2	9.8	Ø4.7	Ø0.2	6.3	6.3	4-M12 DP25	Ø4.1
WIZ 1150	221.9	411.5	60.2	108.7	127.3	94.5	35.4 ~ 70.9	23.6 ~ 59.1	9.8	Ø4.7	Ø0.2	6.3	6.3	4-M12 DP25	Ø4.1



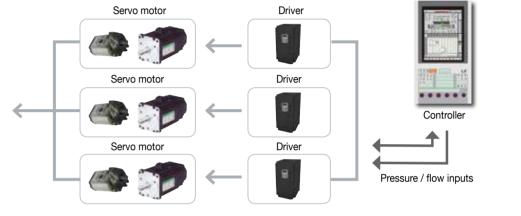

Moving Platen Drawing

16 | LS Injection Molding Machine

Brand-New Premium Injection Molding Machine

WIZ-X Series (1400 ~ 4500 USton)

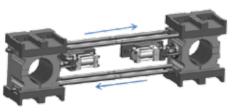
Brand-new premium injection molding machines provide high efficiency and low running cost, delivering value and satisfaction to the customers who want the middle to large size injection molding machines that require small space but have high efficiency.

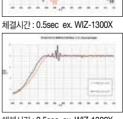


Energy saving system

Energy saving machine → Energy saving 50%

- Dual Operation System
- Shorten Cycle Time by Dual Operation System
- Advanced Servo Energy Saving System(Option)
- More than 50% of energy saving could be accomplished by controlling the revolution with servo motor

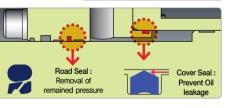




Optimized structure design

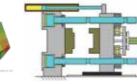
Applied new mold clamping device → 40% improvement in mold clamping time

- Simultaneous operation of half nut and 4 sets of tie bar
- Precise placement, Fast mold clamping, Reduced cycle



해체시간: 0.5sec ex. WIZ-1300X

Booster cylinder flexible rod structure, applied high functional sealing / Decrease in oil leakage

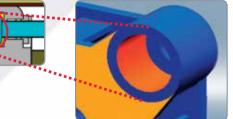

- Low load design through stable circuit configuration
- Hydraulic Block G-Fitting is applied
- High functional sealing
- Reconfiguration of mold opening & closing cylinder

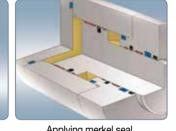
Optimized platen design

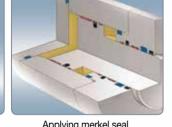
- Two platen type: Installation space minimized
- Tieber, Cylinder: Precise injection
- Optimized Design by FEA

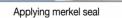
Minimized noise and vibration design

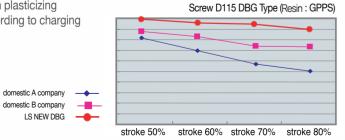
- Minimized noise and vibration Max. 80dB (based on EUROMAP)
- · Optimized design for frame, piping and covering




Applying High efficiency / Performance Parts


Improved oil leakage quality by accomplishing the special solid sealing system

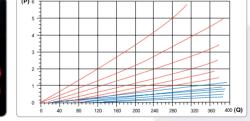

- No internal chip forming ⇒ No damage (Packing & Cylinder)
- Pressure leakage during boosting ⇒ Reducing Energy loss & Cycle time



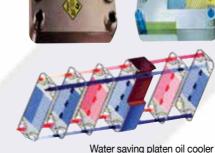
Applied new DBG screw excellent in plasticizing

Comparison in plasticizing

Capacity according to charging


Cooling system

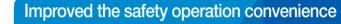
- Maintains oil cleaness & temperature
- Economizing cooling water usage


High functional return filter was applied

- High quality element & filter protection system
- Filter pollution detecting sensor
- SMX-10 micron element : Filtering minute particle
- Protecting pollution via operating separately (Pump, Cooler, Filter)

- Excellent heat exchange

Convenience of maintenance


New Design

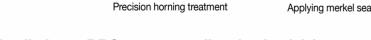
LS

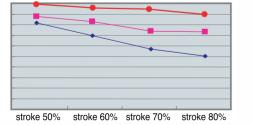
- Wide sight glass is applied, secured machine inside view
- Operating Box
- Adjustable to be fit to the eye evel of the operator

Optimization of wiring and electric system

- Integrated with main body of drive box
- Simple mold & projection separation, Connector applied

Work safety, convenience


- Secured spacious work platform on barrel area
- Safety guard on Clamping and Injection unit
- Ladder is installed inside of the moldfor maintenance
- Non slip footboard



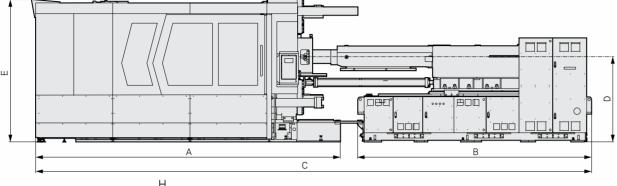
• Excellent resistance against freezing

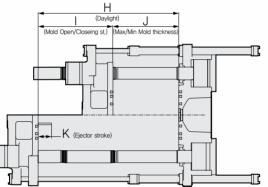
• Inter-corrosive & Resistance

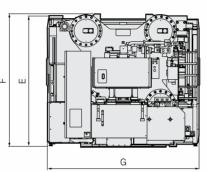
4. Due to continuous improvements, specifications are subject to change without notice.

LS	F
*1.0	E PROPERTY OF THE PROPERTY OF
100	** = *****

			Major Sp	ecification	า						
				WIZ 1400X			WIZ 2000X			WIZ 2200X	
INJECTIO	N UNIT										
Injection Unit Code				i115			i150			i150	
Screw Code			Υ	*A	В	Υ	*A	В	Υ	*A	В
Carrer Diamentar		mm	105	115	125	115	125	140	115	125	140
Screw Diameter		in	4.1	4.5	4.9	4.5	4.9	5.5	4.5	4.9	5.5
Injection Capacity Ca	lculated	in ³	334.2	400.9	473.7	435.8	514.9	645.8	435.8	514.9	645.8
	DC	g	5,039	6,044	7,141	6,570	7,762	9,737	6,570	7,762	9,737
Introduce Occupati	PS	0Z	178	213	252	232	273	344	232	273	344
Injection Capacity	PE	g	4,112	4,932	5,827	5,361	6,334	7,945	5,361	6,334	7,945
rı	PE	0Z	145	174	205	189	223	280	189	223	280
Injection Pressure		psi	30,182	25,158	21,294	29,428	24,906	19,856	29,428	24,906	19,856
Injection Rate		in³/sec	60.7	72.8	86.1	71.0	83.9	105.3	71.0	83.9	105.3
Plasticizing Capacity	(PS)	lbs/hr	1,011.9	1,309.0	1,487.5	1,203.7	1,487.5	1,668.9	1,203.7	1,487.5	1,668.9
Max. Injection Speed		in/sec	4.5	4.5	4.5	4.4	4.4	4.4	4.4	4.4	4.4
Max. Screw Speed		rpm	125 / 110	125 / 110	115 / 102	115 / 102	115 / 102	102 / 90	115 / 102	115 / 102	102 / 90
CLAMPIN	G UNIT										
Clamping Force		ton(US)		1,433.0			1,984.2			2,204.6	
Mold Opening Force		ton(US)		99.2			132.3		154.3		
Distance Between Tie-r	rods : HxV	/ in		55.1 x 55.1 (59.1 x 55.1)		63.0 x 63.0 (70.9 x 63.0	0)	70.9 x 63.0		
Die Plate Dimension :	: H x V	in		76.8 x 76.8 (80.7 x 76.8	3)		84.6 x 84.6 (92.5 x 84.6	3)	96.5 x 88.6		
Clamping Stroke		in		70.9 / 51.2			94.5 / 66.9			94.5 / 66.9	
Daylight		in		98.4			126.0			126.0	
Mold Thickness		in		27.6 ~ 47.2			31.5 ~ 59.1			31.5 ~ 59.1	
Mald Class Crass	High	ft/min		193.6			219.8			219.8	
Mold Close Speed	Low	ft/min		6.6			6.6			6.6	
Mald Ones Casad	High	ft/min		193.6			219.8			219.8	
Mold Open Speed	Low	ft/min		6.6			6.6			6.6	
Ejector Force		ton(US)		39.7			49.6			49.6	
Ejector Stroke		in		11.8			11.8			11.8	
GENEF	RAL										
Utilized Oil Quantity		gal(US)		660			845			845	
Capacity of Motor (60	OHz)	kW	1	79 (60 x 2 + 44 + 11 +	4)		195 (60 x 3 + 11 + 4)			195 (60 x 3 + 11 +4)	
Electric Heater		kW		79			87			87	
Machine Dimension :	L×W×H	ft		37.7 x 11.5 x 9.8			42.0 x 12.5 x 11.2			42.0 x 13.5 x 11.2	

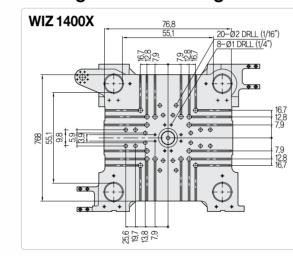

220,466

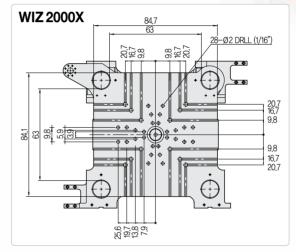

242,513

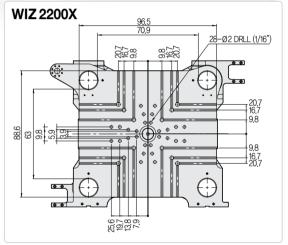

154,326

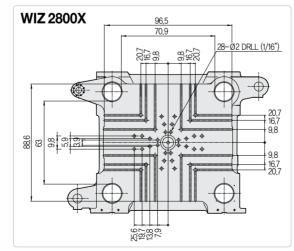
							-							
				WIZ 2800X			WIZ 3300X		WIZ 4500X					
INJECTIO	N UNIT													
Injection Unit Code				i215		i315				i610	i12	200		
Screw Code			Υ	*A	В	Υ	*A	В	Υ	*A	В	Υ	*A	
O D'		mm	125	140	160	140	160	180	180	200	220	240	250	
Screw Diameter		in	4.9	5.5	6.3	5.5	6.3	7.1	7.1	7.9	8.7	9.4	9.8	
Injection Capacity Ca	alculated	in ³	576.6	723.3	944.8	826.7	1,079.7	1,366.5	1,708.2	2,108.9	2,551.7	3,782.1	4,103.8	
	PS	g	8,693	10,905	14,243	12,463	16,278	20,602	25,752	31,793	38,469	57,019	61,870	
lainatina Camanita	P5	OZ	307	385	503	440	574	726	910	1,122	1,358	2,013	2,184	
Injection Capacity	PE	g	7,093	8,898	11,622	10,170	13,283	16,811	21,014	25,943	31,391	46,528	50,486	
	PE	OZ	250	314	410	358	468	592	741	914	1,106	1,640	1,779	
Injection Pressure		psi	32,259	25,712	19,686	33,439	25,602	20,229	31,078	25,175	20,766	27,423	25,275	
Injection Rate		in³/sec	78.4	98.4	128.5	83.4	108.9	137.8	111.7	138.4	167.5	177.9	193.0	
Plasticizing Capacity	(PS)	lbs/hr	1,488.1	1,669.3	2,321.9	1,668.9	2,321.9	2,650.0	2,484.6	2,656.6	2,967.4	3,465.7	3,761.1	
Max. Injection Speed	i	in/sec	4.1	4.1	4.1	3.5	3.5	3.5	2.8	2.8	2.8	2.5	2.5	
Max. Screw Speed		rpm	115 / 102	102 / 90	90 / 80	102 / 90	90 / 80	80 / 70	75 / 55	65 / 50	60 / 45	55 / 40	55 / 40	
CLAMPIN	IG UNIT													
Clamping Force		ton(US)		2,755.8			3,306.9		4,409.2					
Mold Opening Force		ton(US)		181.9			220.5		275.6					
Distance Between Tie-	rods : HxV	in		78.7 x 63.0		74.8	8 x 70.9 (82.7 x 7	0.9)	90.6 x 78.7					
Die Plate Dimension	:HxV	in		107.5 x 88.6		100.4	4 x 96.5 (108.3 x	96.5)	126.0 x 114.2					
Clamping Stroke		in		114.2 / 74.8		106.3 / 70.9			126.0					
Daylight		in		149.6			145.7		165.4					
Mold Thickness		in		35.4 ~ 74.8			39.4 ~ 74.8		39.4 ~ 78.7					
Mold Close Speed	High	ft/min		157.5			173.9				101.7			
iviola Close Speed	Low	ft/min		6.6			6.6		9.8					
Mold Open Speed	High	ft/min		157.5			173.9		101.7					
Iviola Open Speed	Low	ft/min		6.6			6.6				9.8			
Ejector Force		ton(US)		67.2			87.1				87.1			
Ejector Stroke		in		13.8			13.8				17.7			
GENE	RAL													
Utilized Oil Quantity		gal(US)		1,004			1,110			1,453		1,9	981	
Capacity of Motor (6	0Hz)	kW	239	(60 x 3 + 44 + 11	+ 4)	25	55 (60 x 4 + 11 +	4)	3	15 (60 x 5 + 11 +	4)	442 (60 x	7 + 11 x 2)	
Electric Heater		kW		110			145		165	181	204	2	99	
Machine Dimension	:L×W×H	ft		50.5 x 15.1 x 11.5			52.5 x 14.8 x 12.8	3		62.3 x 17.4 x 14.4	4	64.6 x 17	7.4 x 14.4	
Machine Weight		lbs		319,676			374,793			507,072		551	,166	

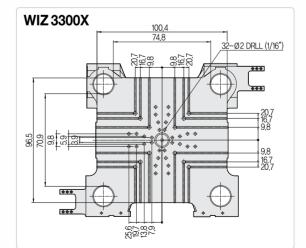
Machine Weight

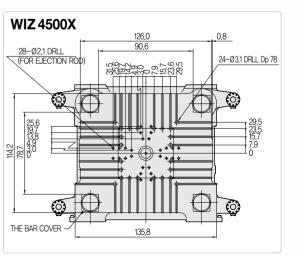

External Form Drawing


			•								(0)
	А	В	C	D	E	F	G	Н	[J	K
WIZ 1400X	246.3	189.4	449.5	68.9	115.1	116.8	134.0	98.4	51.2	47.2	11.8
WIZ 2000X	278	208.3	501	76.8	125	130.9	147.8	126	66.9	59.1	11.8
WIZ 2200X	279.1	102	502	76.8	125.3	133.1	157.9	126	66.9	59.1	11.8
WIZ 2800X	275.6	236.2	570.9	82.7	126	140.9	167.7	141.7	74.8	66.9	13.8
WIZ 3300X	332.4	257	626.1	84.6	136.3	154.1	178.5	145.7	70.9	74.8	13.8
WIZ 4500X	293.7	288.2	776	100	146.1	172.8	207.4	165.4	86.6	78.7	17.7






Moving Platen Drawing



WIZ Series / WIZ-X Series

Standard Equipment

Clamping Unit

- ▶ Automatic Lubrication Device
- ► Mold Clamps (Manual) ▶ Overrun Prevention Device
- ▶ Holes Tapped for Installation of Robot
- ▶ Mechanical safety device(KC Standard)
- ► Hydraulic Ejector (A-Circuit)
- ▶ Low-Pressure Speed Circuit for Mold Set-Up and Mold Protection
- ▶ Try Again Mold Close Circuit with Mold Protection
- ▶ Clamping Position Adjusting Device (Potentiometer)
- ▶ High Speed Mold Open/Close Adjusting Device
- ▶ Quick Mold Opening Circuit
- ▶ Safety Gate & Covers
- ▶ Support for Moving Platen
- ▶ T-Slot Platen
- ▶ Multi-Eiection (Up to 9 Times) and Vibration Ejection
- ► Single Hydraulic Core Puller (A or C)
- ▶ Dual Hydraulic Core Puller (A & C)

Injection Uni

- ▶ Wear Resistant Bimetallic Barrel
 - ► Screw (For General Resins)
- ▶ Closed Loop Control for Injection Process ► Ceramic Band Heater (4 Zones)
- ▶ Cable Heater for Nozzle Zone
- ▶ Heater Cover
 - ▶ Pre-Heating Temperature Control
 - ▶ Injection Ram Advance and Retract Device
 - Nozzle (Open Type)
 - ▶ Nozzle Retract Timing Selector(Sprue Break) ▶ Safety Cover for Injection Unit
 - (Operating Side Only) ▶ Screw Back Pressure Regulator
 - ▶ Screw Cold Start Preventing Device
 - ▶ Screw Drive Hydraulic Motor
 - ▶ Screw 1st and 2nd Suck Back
 - Screw Tip (For General Resins. Non-Return Valve Type)
 - ▶ Injection Speed & Pressure Control Device

Hydraulic System

- ▶ Clamping Pressure Holding Circuit
- ► Selectable Clamp Pump Unloading Circuit During Cooling Time
- ▶ Back Pressure Relieving Circuit
- ► Hydromatch System (Multi-Pump)
- ▶ Injection Pressure Holding Circuit
- ▶ Abnormal Hvd. Oil Temperature Detector
- ▶ Hyd. Oil Warming-Up Device
- ▶ Oil Cleaning System (Filter Type) ▶ Oil Cooler & Level Gauge
- ► Solenoid Valve (With Indicator Light)

Electric System

- ► Closed Loop Controller (HICOM-5000 Injection Unit)
- ▶ Abnormal Operation Warning Device(Buzzer)
- ▶ Abnormal Operation Indicating Device
- ▶ Intrusion Circuit
- ▶ Emergency Stop Push Button Switch

▶ Automatic Barrel Heat-Up Control Device

- ▶ Safety Gate With Interlocks
- ▶ Shot Counter and Count Up Detection for Target Production
- ▶ PID Temperature Control (J-Type)
- ▶ Nozzle Temperature Control by SSR
- ► Abnormal Operation Alarm Lamp ▶ Mold Open/Close Hydraulic Brake Circuit
 ▶ Automatic Purge Circuit
 - Automatic Power Shut Down Circuit

General

- ▶ Instruction Manual
- ▶ Standard Machine Color Body, Frame: LS Gray, Cover: LS White/Orange/Red. Gate: LS Orange
- ▶ Cooling Water Distributor
- Level Pad
- Safety Foot board Ass'y
- ▶ Maintenance Tools & Spare Parts

Optional Equipment

Clamping Unit

- ▶ Air Blow Off Unit
- ► Auto. Mold Clamps (QDC)
- ▶ Hvdraulic Eiector Holding Circuit with Valve
- ▶ Hydraulic Core Puller (B or D)
- ▶ Mechanical safety device
- ▶ Hvdraulic Eiector B Circuit
- ▶ Screw Ejector ▶ Pneumatic Powered Safety Gate (Opening & Closing)
- ▶ Pneumatic Powered Safety Gate (Opening)
- ▶ Tap-Hole Platen

Injection Unit

- with Servo Valve
- Anti-Wear and Anti-Corrosive Barrel and
- Extension Nozzle
- ▶ Temperature Controller
- ▶ Fan Blower
- ▶ High Speed Injection Device (Accumulator)
- ▶ Hydraulic Shut Off Nozzle
- ▶ Special Screw for Flame-Resistant ABS
- ▶ Thermosetting Barrel and Screw

- ▶ High Response Closed Loop Control
 - Injection (By Pump)
- ▶ Automatic Lubrication Device
- (STD+30, 50, 70, 100, 125, 150mm)
- (For Extension Nozzle Heater)
- ▶ Nozzle Safety Cover with Interlock
- ▶ Pneumatic Shut Off Nozzle
- ► Special Screws for Various Materials (Uni-Melt. Etc.)
- Injection Compression

Hydraulic System

- ▶ Automatic Cooling Temperature Regulating Device for Hyd. Oil
 - ▶ Mold Open and Close during Charging ▶ Mold Move on Charging with High Speed
 ▶ Hopper Dryer
 - ▶ Abnormal Hyd. Oil Leveling Device

Electric System

- ▶ Automatic Voltage Regulator
- ▶ Air Conditioning Unit in Control Cabinet
- ▶ Auxiliary Consent Box ▶ Eiector Retract Circuit
- ▶ Valve Gate Circuit
- ▶ Safety Gate Opening interlock Switch (Clamp, Ejector & Core) ▶ Gas Injection Interlock Circuit
- ▶ Robot Interlock Circuit
- ▶ Heater Band Failure Indicator
- ▶ Centralized Network System

▶ Chiller

- - - Mixer
 - - - · LS Gray: Coo Gray 7C(Cover), Cool
 - LS Red: 199C
 - ▶ Foundation Parts

- ▶ Conveyor
- Recommended Color (Pantone No.)
- ▶ Mold Temperature Controller ▶ Take-Out Robot

General

- ▶ Crusher
- General Hopper
- ▶ Hopper Loader
- ▶ Hopper Ladder
- ▶ Different Color Painting Finish-
- Gray 11C (Frame, Body)
- LS Orange: 7417C

Injection

Overview

■ Monitoring temperature

WWELL BEET TET AREL A ASA SS

1522 W 200 11

12 INCH(STD)

- Overview of machine operation ■ Injection speed-Max 10steps ■ Set/Monitor clamp/Ejector position ■ Holding pressure-Max 10steps
 - Unit setup

■ Cut over by pressure, time, speed

■ Able to set display unit by User

Control System (HICOM Gamma)

provide easy operation

TFT clear screen and quicker response time ·

Real time data setting and operation

User-friendly UI

Manual operation button

USB port, Key switch(Option)

- Mold close speed-Max 5steps
 - Mold open speed-5steps ■ Monitoring parameter by graph

Core

- 2 CORE(Standard)
- Able to change Core operation by

Mold protect

000 =

15 INCH(OPTION)

.........

■ Adjust sensitivity

IO parm

■ Monitoring digital outpu (1 zone standard)

Hybrid **WIZ / X Series** 33

32 LS Injection Molding Machine

■ Injection Molding Machine Overseas Sales Head Office

7F, LS Mtron Hi-Tech Center, 39, LS-ro 116beon-gil, Dongan-gu, Anyang-Si, Gyeonggi-Do, 14118, Korea

Tel: 82-31-8045-9758 Fax: 82-31-8045-9796

■ USA Sales Head Office

375 International Park (Suite 400), Newnan GA 30265 Tel: 770-253-3645