

INNOVATIVE TECHNOLOGY PARTNER

Customer Focused Corporation

% **C**NE^{*} 2000

The goal of LS injection molding machines is to meet and exceed the technology and quality requirements of all customers in the global market. We (in partnership with our customers) will expand entry into advanced markets with continuous technology and quality innovation that consistently creates value for our customers. This will lead to high and consistent earnings growth by anticipating and understanding market needs in advance and leveraging this knowledge and insight as an indicator to drive technology, leadership and innovation within the global market without ceasing. Beginning with the development of Korea's first direct compression injection molding machines, LS has always put the customer first. From customer focused and dedicated injection molding machine technology such as two-platen injection molding machines for molders of light guide plates and mobile phones to multi-color injection molding and ultimately to all-electric injection molding machines which are the fruit of the most advanced technology.

Management Philosophy

LSpartnership is about achieving exceptional performance based on mutual respect, care and trust by the people of LS who value integrity and who have a sense of ownership resulting in creating a greater value together, both internally as well as externally with our customers, through cooperation and having open minds.

LSpartnership pursues true partnerships based on action.

Together with its global partners around the world, all those at LS will seek greater value for the next generation through collaborative relationships.

LS Mtron LS Cable & System LS IS LS-Nikko copper GOON [yes'co **LG** Electronics Telecommunication GS Construction Energy Service

Vision

LS Mtron has announced its vision to begin the second act of its new growth story.

LS Mtron's vision is to "Be the ONE" Outstanding People, Best-in-Class Product, Winning Partnerships".

In "Be the ONE", "Be" indicates the determination to "accomplish at all costs!", while "ONE" declares our future state to be the "Top No. 1 and first." "Be the ONE*" signifies LS Mtron's goal in which outstanding people join forces to create best-in-class products that impress customers and drive prosperity for all stakeholders. In addition, "Ownership, New-thinking and Excellence" are the driving forces behind "Be the ONE*" and these core values shall become the basis by which the behaviors of LS Mtron staff are evaluated.

Vision Structure

Vision

Core Values

Outstanding People

The person with the world-class competences in the area of his or her role and task.

Ownership

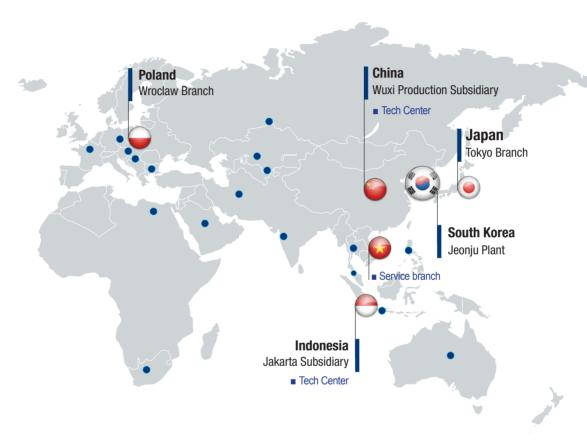
Threw themselves heart and soul into the tasks as if the company and businesses are their own.

Best-in-Class product

Products and services with excellent quality and value giving satisfaction to customers beyond expectations.

New-thinking

Pursuit of positive changes with enlighten and flexible thinking


Winning Partnership

Sharing growth with employees, subcontractors, customers and society.

Excellence

Create customer value with its expertise and insights.

* Global Networks

China Plant

Head Quater LS Mtron Ltd.

Jeonju Plant

04 | About LS Mtron

Difference in technology is a keyword for success!

LS Mtron is offering various model from 20tons to 4,500tons in Automotive, Home appliances, Medical, Packaging, etc

1947 ~ 1970's

The opening chapter of a great story in the Korean plastic industry with LS

• Established as Lucky Chemical Industrial Corporation (Manufacturing of cosmetics begun)

• Produced Korea's first injection-molded synthetic resin products

 Gold Star started IMM business with Toshiba as T/A at Chang-won plant (Currently LG Electric)

• Gold Star developed own model-vertical IMM 10 ton, horizonal IMM 80 ton.

1990's

Premiere on the export market to worldwide

Developed LG's own model, ID-EN Series

• Started to export to USA & Southeast Asia

Developed 1800 ton(1st machine in Korea)

Developed 3000 ton IMM(1st machine in Korea)

2000's

Opening of a plant in Jeonju in Korea and Wuxi in China, Reinforce the product line up and strong our business

• Developed 8 models of All-Electric machine LGE II-Series (30~300 Ton)

LG Electric IMM was awarded JYS by Science and Technology Administration

• Developed 4000 ton IMM(4500 Injection unit)

• Established LS Machinery(LSMW)LTD. In CHINA.

• Developed all-electric injection molding machine (450, 550 ton)

2008 • Developed brand-new premium LGH-S Series, 1300, 2000 Ton

• Changed name to LS Mtron from LS Cable

• Developed two color electric molding machine (LGH EC150, 250)

• Developed brand new premium LGH-S Series, 3000 Ton

• Developed the new type of electric molding machine: LGE 180III

• Developed the large & electric injection molding machine, 2000 Ton

2010's

Continuous development of customized injection molding machine will be recognized as a global leader in plastic industry

• Developed super high speed (& hydraulic) injection molding machine : LGH 150 ton

Developed LGH-S Series : 2500 Ton

• Developed the new type of electri molding machine : LGE 22011, 28011, 33011, 35011, 40011

• Developed all-electric injection molding machine

Oem toggle injection machine

• Developed IML electric injection molding machine : LGE 280II

• Developed ultra-high speed electric injection molding machine for mold frame

• Completed the construction of the High Tech Center of LS Mtron

• Developed direct high speed injection molding machine (injection speed 1,000mm/s)

• Developed electric injection molding machine for mobile phone (150 ton ~ 650ton)

• Developed Large size electric injection molding machine (LGE 1300HB)

• Developed servo system injection molding machine (150 ton~650ton): WIZ 500, 600, 700, 900, 1100

• Developed brand-new premium energy-saving WIZ-X Series (1300, 1800, 2000, 2500, 3000ton)

Developed 8 models of hybrid IMM, LTE model

• Develoled electric injection molding machine for super compact connector

2015 • Developed vertical hybrid IMM (110, 150ton)

• Developed electric IMM for automobile precision parts (650, 850ton)

Developed all-electric model for Injection Blow: IBM-170Ton

Developed new model for the plastic palette: 700 ~ 4000Ton

• Developed new model for the cosmetic packaging: CPM - 170, 220, 280, 350Ton

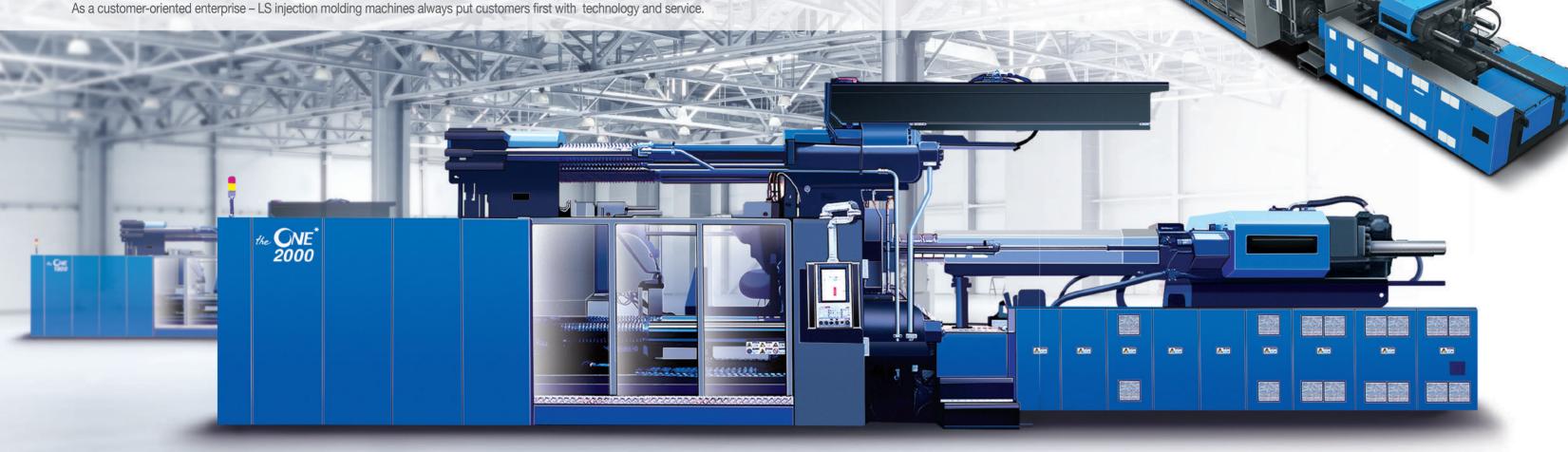
• Developed Premium Hybrid 'the ONE* Series ': 550 ~ 3,600USTon

● 소형 하이브리드 사출기 ' WIZ-T ' 출시 : 90 ~ 400톤

2016

2017




"LS injection molding machine provides innovated performance and advanced technology!"

Currently all of the accumulated know-how working is for you, the customer, who is the object of all the technology efforts of LS Mtron.

The smallest of defects do not go unattended to as LS is constantly pursuing research and experiments to meet the future expectations of our customers as we move forward together.

Premium Hybrid Injection Molding Machine the ONE* Series (550 ~ 3600 USton)

LS Mtron has focused its R&D capability built upon its long history through development, evolution, and advancement from hydraulic models and beyond and with design by its accumulated knowledge of molding technology and safety standards to respond to the changing trends and demands of injection molding requirements to meet customers' needs.

Fremium Mode

the ONE Series

- 1 Applies Digital Position Sensors Precision Control, Decreased Errors
- 2 Applies a Wide Platen Standard Ease of Large Mold Installation
- 3 Half Nut Works at the Same Time Decreased Cycle Time
- 4 Removes the Moving Platen's Tie Bar Bush
- Clean Environment
- 5 Improves Performance of Controlling the Mold Open & Close
- Robot Takeout Error Decrease Decreased Cycle Time
- 6 Applies a U-shaped Tooth Form to Tie Bars
- Improves the Tie Bar Strength • Improves the Half Nut Clamping Error
- 7 Tie Bar Separation Structure Easy to Replace Molds in Low Ceiling areas
- 8 Applies Oil-free Sliding Bushna Clean Environment
- 9 Installs Heavy Weight Molds Increases Allowable Mold Weight by 250%
- 10 Applies the Level Pad Standard No Basic Work Required
- 11 Tie Bar Deflection Prevention Design Clean Environment, Daylight Extension

- 12 Applies the Xaloy Screw Design Ability to Respond to Challenging
- 13 Barrel Deflection Prevention Structure
- Extends the Life of Plasticization Components
 - 14 Improves the Nozzle Cylinder Structure
- Improves the Resin Leak
 - Extends the Component Life
 - 15 Improves Oil Leak
 - Welded Pipe Elimination
 - Applies the Most Up-to-date Piping Technology
 - 16 Applies a High-pressure System
 - Decrease Cycle Time
 - 17 Applies a Power-saving System Energy Saving
 - 18 QUICK BARREL CHANGE SYSTEM
 - Easy to Replace Barrels
 - 19 Respond to Modulation
 - Easy to Respond to Changing the Molded Parts
 - 20 Applies Keba Controllers
 - Precision Control
 - Reinforces User Convenience

Existing model's half nut structure Existing model's trapezoidal tooth form

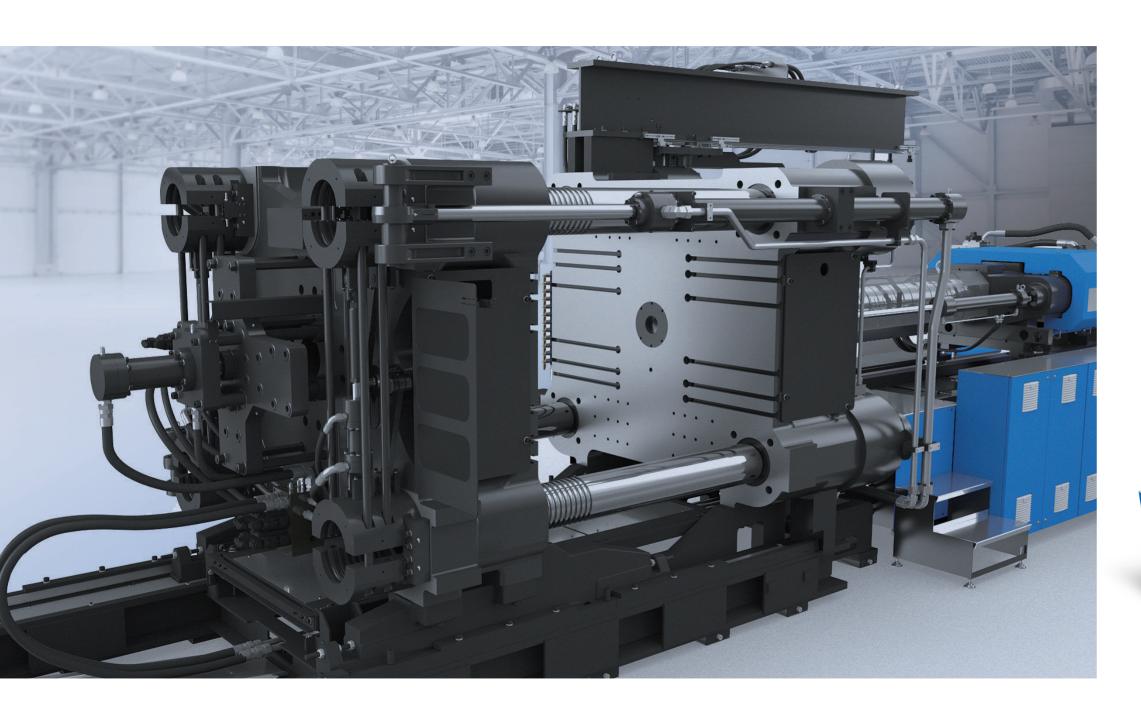
Improves productivity by shortening cycle time

High pressurization of the hydraulic system (185bar → 210bar)

- Max. mold open & close speed 1,000mm/s
- Dry cycle 30% improved

Half nut structure improvement

- Shortening the half nut tightening time by 30%
- Improves the half nut from the left-and-right simultaneous motion to the up-and-down simultaneous motion
- Tie bar horizontal support effect when closing the half nut
- Improves the shape of tie bar, half nut screw parts
- Trapezoidal screws → U-shaped screws
- Reinforces the screw strength and reduces the half nut clamping errors
- Improves stability of high-pressure mold opening
- Applies oil-free sliding bushings
- Build clean environments because less grease is applied
- Clamp position sensor SSI type



New model's half nut structure

New model's U-shaped tooth form

Improves the mold open & close speed, position reproducibility

Applies digital sensors, electronic proportional valves and changes the control method

Equipped with the SSI-type high-precision digital position sensors

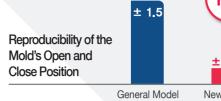
- The existing models use analog-type position sensors
- The resolution is 1µm
- The repeatability is ±0.001% or less
 The linearity is ±0.001% or less

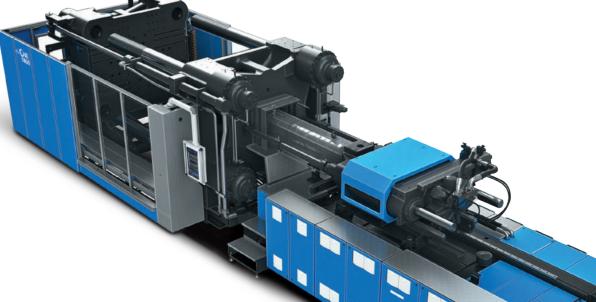
Applies high-performance highcapacity electronic proportional valves

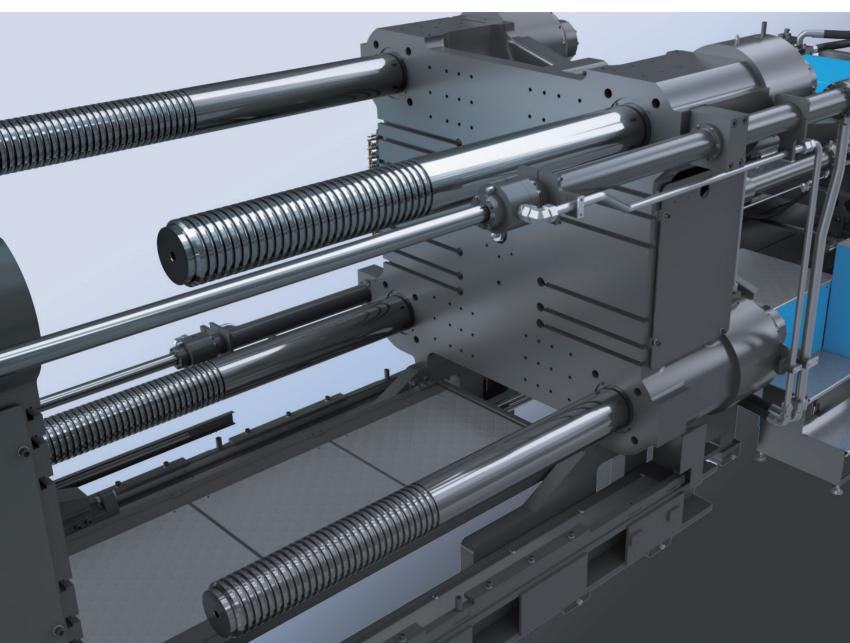
- Flow precision control function
- Maximum flow rate 180 → 1000 l/min
- Hysteresis 1 → 0.1% less
- Repeatability 0.5 → 0.05% less

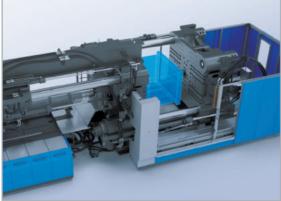
Applies KEBA controllers

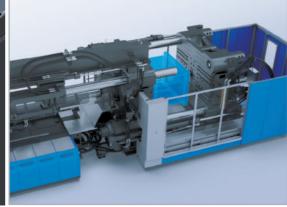
- Open loop → profile close loop method control
- Possible to set a multi-step speed profile for mold shapes
- Improves accuracy through a mold shape's separate CPU



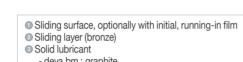



Close Position





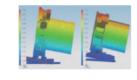
Available for heavy mold mounting, Clean working environment

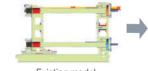

Removes the moving platen's tie bar bushes

No bush abrasion, no lubrication required

Applies oil-free sliding bushes

- \bullet Improves the tie bar's deflection amount by 40%
- Applies semi-permanent self-lubricative bushes
- No maintenance required





- deva.bm: graphite - deva.bm: PTFE Steel backing

Improves the fixed, moving platen support device structure

Increases allowable mold weight by 250

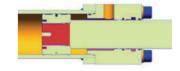
New model

Enhances the working fluid's cleanliness, and improves the oil leak

Enhances internal cleanliness of the working fluid tank

Applies the ceramic & glass special coating to the inside of tank

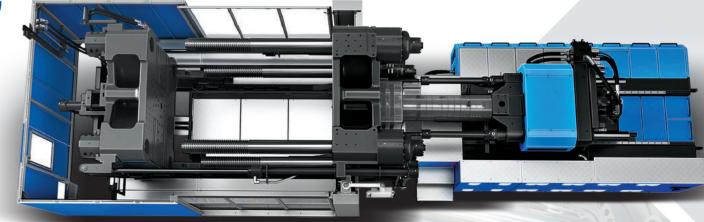
Existing model


Removes all the welded pipes

- Applies the galvanized expansion pipes
- No weld slug generated
- Applies the O-ring type hose fitting
- Applies the FKM sealing applied pipe fitting

Applies the packing cover split structure

Easy to replace packing


Existing model (Packing cover integrated structure)

New model (Packing cover separable structure)

Tie bar pulling system

One-touch automatic tie bar separation

- No disassembly, assembly required
- Easy to install molds in a low-ceilinged factory
- No need to use a mold truck due to the low ceiling

16 LS Injection Molding Machine Premium Hybrid Injection Molding Machine the ONE* Series | 17

Applies the improvement of the injection device structure

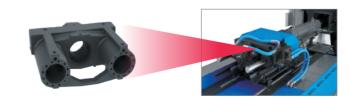
Applies the quick barrel change, barrel support standard

Applies the quick barrel change system - 1

- Lift up the barrel without the need to turn the injection device when replacing the barrel assembly
- Replace / repair after disassembling only the barrel part

Applies the barrel support device standard (Deflection prevention) - 2

• Extended life of barrel & screw

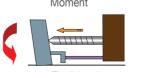


Improves the injection piston structure

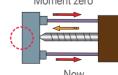
- Piston rod nut looseproof structure
- Simplifies the oil pressure line by the double rod type
- Injection speed, injection pressu due to high pressurization

Simplifies the injection oil pressure line

 Removes separate pipes and processes flow paths inside a casting prevents oil leak and improves appearance



Easy to respond to modulation


- Possible to respond only by replacing barrel assembly and adjusting nozzle cylinders without other replacement when replacing Y, A, B screws
- Possible to replace only the injection device without moving or replacing frames also for applying the injection device below one step

Moment zero nozzle touch structure

- Arranges nozzle cylinders on both sides parallel to barrels, so no moment Is generated due to eccentricity
- Improves resin leak
- Extends the life of cylinders, plasticized components

Applies KEBA Controllers

Quick response and user interface reinforcement

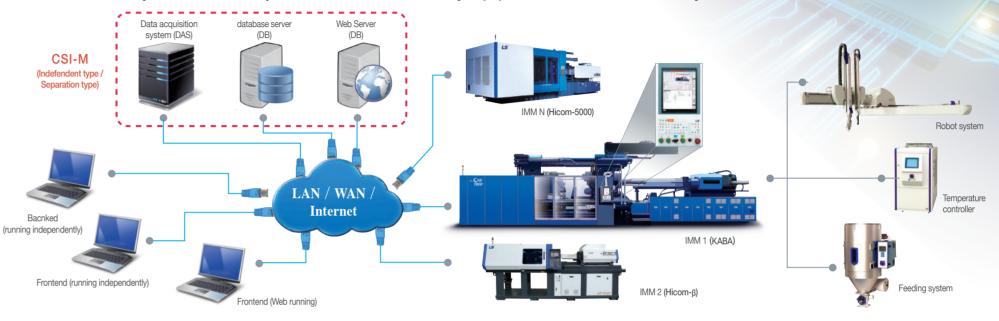
Easy to convert units

Core page

Clamping page

- Function to search data on molds
- Easy and various graphic functions
- Users can change the sequence of cycles
- Possible to communicate with peripheral devices and monitor them

Injection page


An easy-to-analyze cycle monitoring screen

- Possible to monitor I/O and turn On/Off the forced output on the touch screen
- Provides operation convenience for users by increasing the screen size
- Adds a memo function possible to make an independent memo and associate with mold information

LS CSI Solution (CSI-M / CSI-C)

CSI-M & CSI-C system linked LS injection machine and auxiliary equipment to realize smart factory

Production and process monitoring of Injection molding machine system (CSI-M)

Injection system data linkage function for the MES and powerful monitoring solution

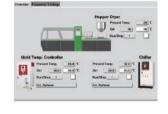
- Mobile device system monitoring
- Provide multiple connections to LS Mtron machines
- Status monitoring and controlling function of every linked device
- Injection machine information, status and et up function
- Exception: Machine structure and related system data
- Screw size & maximum stroke remote setting is not provided

Interlocked with customer MES

- Injection production information loading function depend on production plan
- Prior consultation needed with customer SI team before applying MES interlock system

■ Manager Functioin: MBO & production plan comparison mornitoring

- Information output based on database analysis
- Production ratio mornitoring (OEE, time / date / monthly)
- Production information analysis by mode (automatic / preparation / alam / OFF)



Auxiliary equipment control system (CSI-C)

Injection molding machine centered controlling solution system realize convenience and production improvement

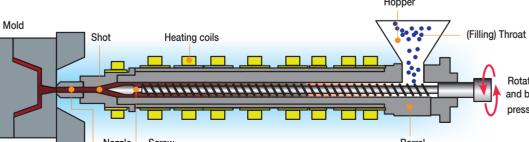
- Injection molding machine operation panel controlling
- Equipment parameter setting: major parameter variable and setting function
- Controlling 64 units maximum
- Equipment production condition up/down loading system prevent input condition by user
- Mold bar code scanner linkage to provide injection machine and auxiliary condition loading
- Alarm checking and alarm logging through operation panel



20 LS Injection Molding Machine Premium Hybrid Injection Molding Machine **the ONE*** Series 21

LS Barrel Technology

Spin Casting Manufacturing Method



- The bimetal barrel, which is made by Nordson Xaloy®'s technical skills accumulated for more than 85 years, is stable because the basic material itself is different from domestic/china-made products, and the alloy layer is resistant to wear and corrosion, so it has a long life and can make large products.
- After manufacturing the bimetal layer, the basic metal's heat treatment hardness is kept and the alloy layer is thin with an even thickness, that insures the inherent characteristic are maintained and defects are eliminated.
- The bimetal material of Nordson Xaloy® is used as the standard

LS Screw Technologgy

- Possible to apply to most thermoplastic
- Mixing effect: increases by about 3 times
- compared to general screws ■ Thermal stability: processing can be at done at lower temperature compared to general screws, therefore shortening the cooling time and preventing excess thermal strain upon the resin's inherent properties
- Time required for purging when replacing resin: reduces by about 25% compared to general screws
- Applies the Nordson Xaloy® Pulsar® Design

sandant sand sand

Nordson Xaloy's Pulsar Screw Is Being Applied as the Standard Screw, and a Dedicated Screw Design Is Applied when Customers Require

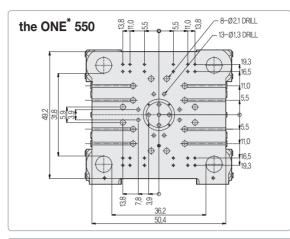
■ Classification of Design Criteria

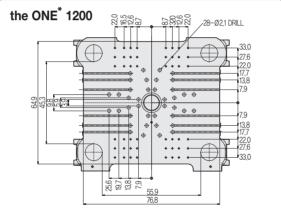
Туре		Main Features	Remarks						
		Dedicated to the Resin Sensitive to Shear Stress	PC, Rigid PVC, PPS etc.						
Standard	Pulsar	Respond to General Purpose, General Crystalline / Amorphous Resin	ABS, PEEK, PET, SAN, PEI, PPO, HIPS, GPPS, PA+GF, PP+GF etc						
		For High Shear Stress, Crystalline Resin	LCP, PA, PBT, PEEK, HDPE, LDPE, LLDPE, PP, POM etc.						
		Optical PC Dedicated, Low Compression, Low Detention Time							
		TPU Dedicated Low Shear							
		PP+Long Glass Fiber Dedicated (Possible to Use General PP, PC, ABS)							
Dedicated	S	Dedicated to Silicon	Carry Out a Design with Client Company's Requirements on a Single Type Design Basis						
		Dedicated to PA6 / 66							
		SAN / PETG (Dedicated to Cosmetics)							
	Mixing	PP / PE / PS High Mixing Dedicated Screw							

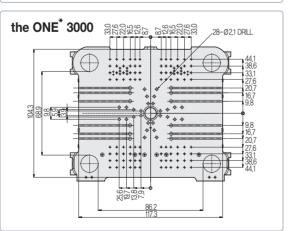
■ Classification By Material

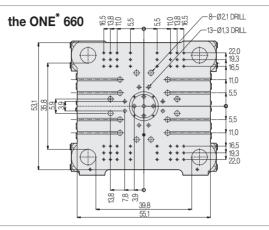
_							
Screen Type	HRC1	Characteristic					
General (No Electric)	30 ~ 24	Pre Hardened Steel					
Anti-Wear (AW)		Alloy Tool Steel					
Anti-Corrosion Anti-Wear (AWAC)	56 ~ 60	Hi-Steel					
Super Anti-Corrosion Anti-Wear (SAWAC)		Powdered Hi-Steel Particle Sintering Special Steel					

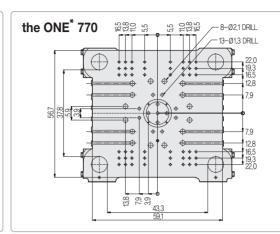
LS Premium Injection Molding Machine the ONE* Series

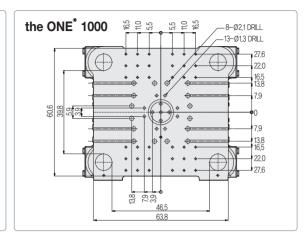

Major Specification

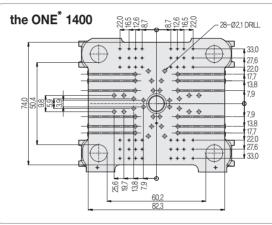

			the ONE* 5	50	the ONE [*] 660			the ONE [*] 770			th	e ONE [*] 10	000	the ONE [*] 1200			
INJECTION U	TIV																
Injection Unit Code			i30			i46			i66			i101			i101		
Screw Code		Y	А	В	Υ	А	В	Υ	А	В	Υ	А	В	Y	А	В	
Screw Diameter	mn	n 60	70	80	70	80	90	80	90	105	90	105	115	90	105	115	
Screw Diameter	in	2.4	2.8	3.1	2.8	3.1	3.5	3.1	3.5	4.1	3.5	4.1	4.5	3.5	4.1	4.5	
Injection Capacity Calculate	ted in ³	66.4	90.4	118.1	103.3	135.0	170.8	151.8	192.2	261.6	225.2	306.5	367.6	225.2	306.5	367.6	
ı	PS g	1003.1	1365.3	1783.3	1560.4	2038.1	2579.4	2292.8	2901.9	3949.7	3400.2	4628.0	5551.5	3400.2	4628.0	5551.5	
Injection Capacity	OZ	35.4	48.2	62.9	55.0	71.9	91.0	80.9	102.4	139.3	119.9	163.2	195.8	119.9	163.2	195.8	
ı	PE g	791.9	1077.9	1407.9	1231.9	1609.0	2036.4	1810.1	2290.9	3118.2	2684.3	3653.7	4382.7	2684.3	3653.7	4382.7	
	OZ	27.9	38.0	49.7	43.5	56.8	71.8	63.9	80.8	110.0	94.7	128.9	154.6	94.7	128.9	154.6	
Injection Pressure	Mp	a 273.0	200.6	153.6	265.5	203.3	160.6	252.8	199.8	146.8	269.5	198.0	165.1	269.5	198.0	165.1	
Injection Pressure	ps	39595	29091	22272	38508	29482	23295	36669	28973	21286	39088	28718	23940	39088	28718	23940	
Injection Rate	in³/s	ec 23.5	31.9	41.7	28.2	36.8	46.5	39.7	50.3	68.4	49.1	66.9	80.2	49.1	66.9	80.2	
Plasticizing Capacity (PS)	lbs/	hr 560.2	693.9	821.7	660.9	821.7	958.0	821.7	958.0	1221.0	958.0	1221.0	1350.6	958.0	1221.0	1350.6	
riasilcizing Capacity (F3)	g/se	ec 71	87	104	83	104	121	104	121	154	121	154	170	121	154	170	
Max Screw Speed	rpn	240	210	180	200	180	160	180	160	140	160	140	125	160	140	125	
CLAMPING U	NIT																
Clamping Force	ton(L	JS)	551			664			773			995			1216		
Mold Opening Force	ton(L	JS)	40.7			47.7			55.4			72.3			81.6		
Distance Between Tie-rods (H	lxV) in		36.2 x 31.9			39.8 x 35.8			43.3 x 37.4			46.5 x 39.8			55.9 x 45.3		
Die Plate Dimension (HxV)	in		51.2 x 49.2			55.1 x 53.1			59.1 x 56.7			63.8 x 60.6			76.8 x 64.9		
Daylight	in		61.0		68.9			72.8			90.6			94.5			
Mold Thickness	nin. in		14			16			18			20			24		
m	nax, in		35			39			43			47			51		
Min. mold size (HxV)	in		25.2 x 22.0			27.6 x 24.8			30.3 x 26.4			32.3 x 27.6			38.9 x 31.5		
Max, mold weight	lbs		17637.3			20944.3			24251.3			28660.6			46297.9		
Open Mold Speed max.	ft/m	in	196.9		196.9			196.9			196.9			196.9			
Ejector Force	ton(L	JS)	11.9			11.9			11.9			24.5			24.5		
Ejector Stroke	in		9.8			9.8			9.8			11.8			11.8		
GENERAL																	
Capacity of Motor	kW	/	28.3 + 56.3			28.3 + 56.3			36.7 + 71.9			71.9 x 2			71.9 x 2		
Utilized Oil Quantity	gal(L	JS)	211.3		237.8			264.2			343.4			343.4			
Machine Dimension (LxWx	(H) ft		22.6 x 7.6 x 7	7.2	24.6 x 8.6 x 7.9			2	7.0 x 8.9 x 7	.9	32.5 x 9.6 x 8.9			30	3.5 x 10.9 x 9	9.2	
Machine Weight	lbs	3	30864 + 12125			36376 + 17739			6297 + 2204	16	6	1729 + 2866	60	85980 + 30864			

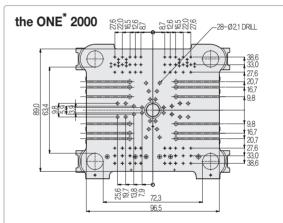


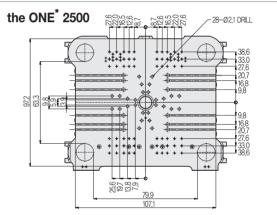

			th	e ONE* 14	00	the ONE [*] 2000			th	e ONE [*] 25	00	th	e ONE * 30	00	the ONE* 3600			
INJECTIO	N UNIT																	
Injection Unit Code			i135			i174			i220				i332		i630			
Screw Code			Υ	А	В	Υ	А	В	Υ	А	В	Υ	А	В	Α	В	С	
Screw Diameter		mm	105	115	125	115	125	140	125	140	160	140	160	180	200	230	250	
Screw Diameter		in	4.1	4.5	4.9	4.5	4.9	5.5	4.9	5.5	6.3	5.5	6.3	7.1	7.9	9.1	9.8	
Injection Capacity Ca	lculated	in ³	335.5	402.5	475.5	437.4	516.7	648.2	576.6	723.3	944.8	826.7	1079.7	1366.5	2108.8	2788.9	3295.0	
	PS	g	5066.8	6077.9	7180.9	6604.3	7802.9	9787.9	8707.5	10922.8	14266.4	12483.1	16304.5	20635.4	31844.8	42114.7	49757.4	
Injection Capacity		OZ	178.7	214.4	253.3	233.0	275.2	345.3	307.2	385.3	503.2	440.3	575.1	727.9	1123.3	1485.6	1755.1	
	PE	g	4000.1	4798.4	5669.1	5214.0	6160.2	7727.3	6874.4	8623.2	11263.0	9855.1	12872.0	16291.1	25140.6	33248.4	39282.2	
	FL	OZ	141.1	169.3	200.0	183.9	217.3	272.6	242.5	304.2	397.3	347.6	454.0	574.7	886.8	1172.8	1385.6	
Injection Pressure		Mpa	240.0	200.1	169.3	238.4	201.8	160.9	223.9	178.5	136.7	240.0	183.7	145.2	178.8	135.2	114.4	
injection Fressure		psi	34809	29019	24561	34581	29269	23333	32476	25889	19822	34809	26651	21057	25931	19608	16596	
Injection Rate		in³/sec	62.3	74.7	88.3	67.2	79.4	99.6	77.3	96.9	126.6	94.3	123.2	155.9	148.1	195.9	231.5	
Diagticizina Consoit / DC	(DC)	lbs/hr	1221.0	1350.6	1514.7	1350.6	1514.7	1814.9	1514.7	1814.9	2091.6	1728.4	2091.6	2453.8	2562.6	3375.3	3485.3	
Plasticizing Capacity (PS)		g/sec	154	170	191	170	191	229	191	229	264	218	264	309	323	425	439	
Max Screw Speed		rpm	140	125	115	125	115	105	115	105	90	100	90	80	65	60	50	
CLAMPIN	NG UNIT																	
Clamping Force		ton(US)	1434		1990			2545			2987			3640				
Mold Opening Force		ton(US)		102.0		136.7			176.6			205.9			254.3			
Distance Between Tie-ro	ods (HxV)	in	60.2 x 50.4			72.8 x 63.4			79.9 x 63.4			86.2 x 68.9			89.4 x 71.3			
Die Plate Dimension	(HxV)	in	82.3 x 74.0			96.5 x 88.9			107.1 x 96.1			117.3 x 104.3			122.8 x 106.3			
Daylight		in		120.1		133.9			145.7			153.5			161.4			
Mold Thickness	min.	in	28			31			31			35			39			
IVIOIU TTIICKTIESS	max,	in	55			63			71			79			83			
Min, mold size (HxV)		in		42.1 x 35.0		50.8 x 44.1			55.9 x 44.1				60.2 x 48.0		62.2 x 49.6			
Max, mold weight		lbs	66139.9			99209.8			136689.0			165349.7			178577.6			
Open Mold Speed max,		ft/min	196.9			196.9			196.9			196.9			196.9			
Ejector Force		ton(US)	29.0		29.0			47.5			47.5			47.5				
Ejector Stroke in		11.8			11.8			15.7				15.7		15.7				
GENE	RAL																	
Capacity of Motor		kW	56.3 x 3			56.3 x 3			56.3 x 2 + 71.9			5	6.3 x 3 + 71	.9	71.9 x 4			
Utilized Oil Quantity gal(U		gal(US)		475.5		554.8			660.4				766.1		871.8			
Machine Dimension (LxWxH)		ft	39	9.7 x 11.8 x 9	9.2	42.7 x 13.5 x 11.2			50	.5 x 14.1 x 1	1.5	54	.1 x 16.4 x 1	2.1	67.3 x 16.4 x 12.8			
Machine Weight		lbs	1	16845 + 374	79	18	58733 + 440	92	2	11644 + 837	76	26	88964 + 903	89	319670 + 143300			

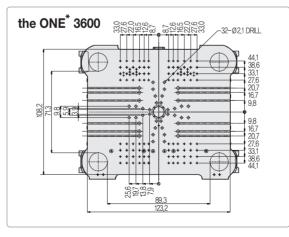












■ Injection Molding Machine Overseas Sales Head Office

7F, LS Mtron Hi-Tech Center, 39, LS-ro 116beon-gil, Dongan-gu, Anyang-Si, Gyeonggi-Do, 14118, Korea

Tel: 82-31-8045-9758 Fax: 82-31-8045-9796

■ USA Sales Head Office

375 International Park (Suite 400), Newnan GA 30265 Tel: 770-253-3645

